Адская работа. Как добывают серу из вулкана. Зачем добывают серу в индонезии. Добыча серы в индонезии Для чего нужна сера из вулкана

В восточной части острова Ява, что находится в Индонезии, есть удивительное по красоте, но очень опасное по своей природе место – это вулкан Kawah Ijen. Вулкан находится на высоте около 2400 метров над уровнем море, диаметр его кратера 175 метров, а глубина – 212 метров. В его жерле расположено, наверное, самое странное и пугающее озеро прекрасного яблочно-изумрудного цвета, в котором рискнет искупаться разве что Терминатор, поскольку вместо воды в нем серная кислота. А точнее сказать – смесь серной и соляной кислоты объемом 40 млн. тонн.

Известный французский фотограф Оливье Грюневальда недавно совершил несколько путешествий в серные рудники в кратере вулкана Kawaha Ijen, находящегося в Восточной Яве, Индонезия. Там он сделал при помощи специального оборудования захватывающие сюрреалистичные фотографии этого места в лунном свете, освещенного факелами и синем пламенем горящей расплавленной серы.

Спуск в кальдеру вулкана Kawaha Ijen, где находится озеро с серной кислотой шириной в километр. На его берегах добывают серу

Каждый литр этой смертельной жижи содержит дополнительно по 5 грамм расплавленного алюминия. Всего же в озере по приблизительным подсчетам содержится более 200 тонн алюминия. На поверхности озерца температура колеблется в районе 60 градусов, а на его дне и все 200!

Кислые газы и пар выделяются из желтоватых кусков серы

Чтобы люди могли представить всю опасность озера для жизней своих, был проведен эксперимент. В озеро на 20 минут опустили лист алюминия, уже при погружении он стал покрываться пузырями, а по прошествии всего времени, алюминиевый лист стал тонким, словно кусок ткани.

Рабочий отламывает кусок от твердой серы. Потом серу несут на станцию взвешивания.

Однако озеро и сам кратер вулкана Kawah Ijen используется не для привлечения туристов, а для добычи серы в весьма неблагоприятных для человека условиях. А серы в этом кратере несметное количество, но поскольку это все же ЮВА, то полностью используется ручной труд.

Ночь. Шахтер с факелом находится внутри кратера вулкана Ijen Kawaha, глядя на поток жидкой серы, светящийся сверхъестественным голубым цветом.

Рабочие – местные жители без каких-либо защитных костюмов и противогазов, а вдыхать запах серы то еще отвращение, добывают куски серы день и ночь, используя при этом лишь свои ничем незащищенные руки и платок, повязанный на лице для защиты рта и носа.

Шахтеры трудятся здесь в адских условиях во время добычи серы. Фотограф Оливье Грюневальда описал здешний запах как невыносимый, требующий маску или противогаз для техники безопасности. Некоторые из горняков их носят, остальные работают без них.

Шахтеры с ломами, которыми откалывают куски серы:

Рабочий укладывает куски серы в корзины, чтобы выносить ее из вулкана:

Вам кажется это все нарисовано? Посмотрите видео:

Поверили?

Эти причудливые формы образовались из потока жидкой серы внутри кратера вулкана Kawaha Ijen. Когда сера расплавленная, она имеет кроваво-красный цвет. По мере охлаждения она становится все более и более желтой

Расплавленная сера капает из керамической трубы, которая конденсирует серные газы от вулкана в жидкость. Потом она остывает, затвердевает, и ее добывают рабочие

Шахтер дошел до пункта назначения со своим грузом. Шахтеры делают два или три ходки за серой в день, получая за свой тяжелый труд около $ 13 США за смену

Механизм для начальной переработки серы, где большие куски разбиваются на более мелкие

Затем куски серы помешаются над огнем, и она снова расплавляется

Расплавленная сера разливается по емкостям

Последний этап этогопроцесса - распределение жидкой серы на плитах для охлаждения. Когда она охладится и превратится в серные листы, они отправляются на местные местные заводы по вулканизации резины и других промышленные объекты

Фотограф Оливье Грюневальда: «Ощущение такое, что находишься на другой планете». Грюневальд потерял одну камеру и два объектива в суровых условиях кратера. Когда съемки были закончены, он выбросил все свои вещи в мусор: серный запах был настолько сильным, что от него невозможно будет избавиться.

А теперь дневной репортаж из этой шахты:

Индонезийский шахтер несет серу из Ijen 24 мая 2009 в окресностях Banyuwangi, Восточная Ява, Индонезия.

Заполненное кислотой озеро внутри кратера вулкана Ijen 200 метров в глубину и километр в ширину. Фото сделано 24 мая 2009 года в Восточной Яве, Индонезия. Озеро наполняется раствором серной кислоты и хлористого водорода при температуре 33 Сº.

Работник ремонтирует трубы, в которых, конденсируются сернистые газы. Комплекс вулкана Ijen 24 мая 2009 в окресностях Banyuwangi, Восточная Ява, Индонезия.

Шахтер извлекает серу из трубы на кратере вулкана Ijen 24 мая 2009 года в Восточной Яве, Индонезия. Расплавленная сера вытекает из труб глубокого красного цвета, и по мере охлаждения постепенно становится желтой и затвердевает.

Работники чинят трубы, в которых, конденсируются сернистые газы. Комплекс вулкана Ijen 24 мая 2009 в окресностях Banyuwangi, Восточная Ява, Индонезия.

Шахтер извлекает серу из трубы у кратера вулкана Ijen 24 мая 2009 года в Восточной Яве, Индонезия.

На этом фото, сделанном через сегмент запасной керамической трубы, работники ремонтируют большую трубу для конденсации серы. Комплекс вулкана Ijen 24 мая 2009 в окресностях Banyuwangi, Восточная Ява, Индонезия.

Кусок серы добываемой из вулкана Ijen. Фото сделано 24 мая 2009 год, Восточная Ява, Индонезия.

Шахтер извлекает серу из трубы на кратер вулкана Ijen 24 мая 2009 года в Восточной Яве, Индонезия.

Загруженные серой корзины, готовые к тому, чтобы их несли вверх по крутым стенам кратера, а затем до станции взвешивания. 24 мая 2009.

Шахтер приближается к верхней части стены кратера по исхоженной тропе, ведущей к вулкану Kawah Ijen 25 мая 2009 года в Восточной Яве, Индонезия.

На фото видно, как тяжела ноша – вес ее может доходить до 70кг - это заметно по сжатой коже и мышцам шахтера, который несет серу на станцию взвешивания 25 мая 2009.

Шахтер показывает болячки и шрамы от переноски серы из вулкана Ijen, 24 мая 2009 года в Восточной Яве, Индонезия.

Шахтер доходит до станции взвешивания и вешает свой груз серы на весы. 25 мая 2009 года в Восточной Яве, Индонезия.

Шахтер отдыхает на базовом лагере, который называется «Лагерь Sulfutara». 24 мая 2009 года в Индонезии.

В восточной части острова Ява, что в Индонезии, находится вулкан Иджен. В его кратере образовалось озеро, полное бирюзовой воды. Но не вздумай в него нырять – водичку впору заливать в аккумулятор.

Путь наверх

Из столичной ехать до Иджена слишком долго. Проще начать с соседнего острова Бали. На пароме добравшись до порта Кетапанг, можно взять такси прямо до вулкана: поездка обойдется тебе приблизительно в 40 $. Готовься к тому, что водитель будет брать попутчиков. У подножья Иджена с машиной придется расстаться – наверх ведет только пешая тропа, узкая и извилистая.

Перед подъемом можно найти проводника или взять экскурсию, вот только смысла в этом особого нет: работяги, которых ты обязательно встретишь по дороге, расскажут все, что ты хочешь знать. Добравшись до перевалочной станции Пос Бандаре, не забудь утеплиться – на вершине дует холодный ветер. Теперь ты готов примерить на себя шкуру индонезийского шахтера.

Грязная работенка

В озере Кавах наверху плещется не только вода, но и серная кислота. Местные жители должны быть благодарны богу вулкана, Иджен стабильно выбрасывает газовые испарения. Поднимаясь на поверхность, газ задерживается на камнях и в специальных керамических трубах. Так создаются идеальные условия для конденсации серы.

Стекая по трубе, раскаленная масса затвердевает и становится желтой. Серу выбивают из труб с помощью стальной арматуры.

С виду пористые и легкие куски серы на деле весят очень много. Груз от 45 до 90 кг добытчик тащит на себе несколько километров. Отдышался, передохнул – и снова за серой. Каждый рабочий за день совершает две-три ходки.

Харта, 34 года. «Со временем я научился надолго задерживать дыхание и работать очень быстро, чтобы ядовитые пары не жгли легкие».

Снаряжение у шахтеров небогатое: спина, коромысло и тряпка для защиты от испарений. На вершине вулкана почти невозможно дышать, так что лучше захвати с собой респиратор.

Рабочие любят спускаться вниз в компании. За пару сигарет они с радостью расскажут тебе то, чего не увидишь по каналу Discovery. Можно даже поднять коромысло: посмотрев на твою технику, добытчик уважительно кивнет, ну, или посмеется.

Сигареты – местная валюта, без них никуда. Курят шахтеры поголовно, словно им серных испарений недостаточно. Конечно, все это плохо сказывается на продолжительности жизни: если старатель доживает до 50 – это большая удача. В то же время, работа добытчика считается неплохой. Зарабатывают здесь в несколько раз больше, чем на местных фабриках.

Гема, 26 лет. «Я курю сигареты с гвоздикой, чтобы избавиться от едкого вкуса во рту».

Хороший заработок

В трех километрах от вершины находится станция взвешивания. Здесь же организовано простенькое общежитие – для тех, кто не хочет сегодня возвращаться домой. Там можно перекусить и купить сувенир: фигурку, отлитую из серы.

Под навесом сидит приемщик – неприятный тип, похожий на работника ломбарда. Он окидывает корзины оценивающим взглядом и велит ставить их на весы. Отметка штампуется на бумажку, сера отправляется в грузовик, а шахтер – к зарплатному окошку. Платят здесь сразу и без проволочек.

За 60 кг чистого веса дают порядка 4,5 $. За месяц крепкий старатель зарабатывает до 300 $. Для сравнения: подсобный рабочий фабрики батика получает всего 90 $ в месяц.

Сулейман, 31 год. «Я делаю это, чтобы прокормить свою жену и ребенка. На рисовых полях столько не заработаешь».

Жизнь вне вулкана

В шахтеры идут люди совершенно разных возрастов. На вулкан поднимаются и старики, и молодые парни, почти все они уже обзавелись семьеёй. При желании можно даже напроситься в гости к одному из старателей. Живут они скромно, но в гостеприимстве им не откажешь.

О работе и жизни они рассказывают охотно, тайком посмеиваясь над туристами. Такое чувство, что адский труд шахтерам вовсе не в тягость: улыбки не сходят с обветренных лиц, а сами они выглядят очень молодо. В следующий раз, когда устанешь от работы в офисе, вспомни индонезийского шахтера. Оптимизма им точно не занимать.

Жуманто, 40 лет. «У меня нет семьи. Вулкан дает мне ощущение свободы. Я ни от кого не завишу и работаю столько, сколько считаю нужным».

Сера – одно из немногих веществ, которыми уже несколько тысяч лет назад оперировали первые «химики». Она стала служить человечеству задолго до того, как заняла в таблице Менделеева клетку под №16.

Об одном из самых древних (хотя и гипотетических!) применений серы рассказывают многие старинные книги. Как источник тепла при термообработке грешников серу живописуют и Новый и Ветхий заветы. И если книги такого рода не дают достаточных оснований для археологических раскопок в поисках остатков райских кущ или геенны огненной, то их свидетельство о том, что древние были знакомы с серой и некоторыми ее свойствами, можно принять на веру.

Одна из причин этой известности – распространенность самородной серы в странах древнейших цивилизаций. Месторождения этого желтого горючего вещества разрабатывались греками и римлянами, особенно в Сицилии, которая вплоть до конца прошлого века славилась в основном серой.

С древнейших времен серу использовали для религиозно-мистических целей, ее зажигали при различных церемониях и ритуалах. Но так же давно элемент №16 приобрел и вполне мирские назначения: серой чернили оружие, ее употребляли при изготовлении косметических и лекарственных мазей, ее жгли для отбелки тканей и для борьбы с насекомыми. Добыча серы значительно увеличилась после того, как был изобретен черный порох. Ведь сера (вместе с углем и селитрой) – непременный его компонент.

И сейчас пороховое производство потребляет часть добываемой серы, правда весьма незначительную. В наше время сера – один из важнейших видов сырья для многих химических производств. И в этом причина непрерывного роста мирового производства серы.

Происхождение серы

Большие скопления самородной серы встречаются не так уж часто. Чаще она присутствует в некоторых рудах. Руда самородной серы – это порода с вкраплениями серы.

Когда образовались эти вкрапления – одновременно с сопутствующими породами или позже? От ответа на этот вопрос зависит направление поисковых и разведочных работ. Но, несмотря на тысячелетия общения с серой, человечество до сих пор не имеет однозначного ответа. Существует несколько теорий, авторы которых придерживаются противоположных взглядов.

Теория сингенеза (т.е. одновременного образования серы и вмещающих пород) предполагает, что образование самородной серы происходило в мелководных бассейнах. Особые бактерии восстанавливали сульфаты, растворенные в воде, до сероводорода, который поднимался вверх, попадал в окислительную зону и здесь химическим путем или при участии других бактерий окислялся до элементарной серы. Сера осаждалась на дно, и впоследствии содержащий серу ид образовал руду.

Теория эпигенеза (вкрапления серы образовались позднее, чем основные породы) имеет несколько вариантов. Самый распространенный из них предполагает, что подземные воды, проникая сквозь толщи пород, обогащаются сульфатами. Если такие воды соприкасаются с месторождениями нефти или природного газа, то ионы сульфатов восстанавливаются углеводородами до сероводорода. Сероводород поднимается к поверхности и, окисляясь, выделяет чистую серу в пустотах и трещинах пород.

В последние десятилетия находит все новые подтверждения одна из разновидностей теории эпигенеза – теория метасоматоза (в переводе с греческого «метасоматоз» означает «замещение». Согласно ей в недрах постоянно происходит превращение гипса CaSO 4 · 2H 2 O и ангидрита CaSO 4 в серу и кальцит СаCO 3 . Эта теория создана в 1935 г. советскими учеными Л.М. Миропольским и Б.П. Кротовым. В ее пользу говорит, в частности, такой факт.

В 1961 г. в Ираке было открыто месторождение Мишрак. Сера здесь заключена в карбонатных породах, которые образуют свод, поддерживаемый уходящими вглубь опорами (в геологии их называют крыльями). Крылья эти состоят в основном из ангидрита и гипса. Такая же картина наблюдалась на отечественном месторождении Шор-Су.

Геологическое своеобразие этих месторождений можно объяснить только с позиций теории метасоматоза: первичные гипсы и ангидриты превратились во вторичные карбонатные руды с вкраплениями самородной серы. Важно не только соседство минералов – среднее содержание серы в руде этих месторождений равно содержанию химически связанной серы в ангидрите. А исследования изотопного состава серы и углерода в руде этих месторождений дали сторонникам теории метасоматоза дополнительные аргументы.

Но есть одно «но»: химизм процесса превращения гипса в серу и кальцит пока не ясен, и потому нет оснований считать теорию метасоматоза единственно правильной. На Земле и сейчас существуют озера (в частности, Серное озеро близ Серноводска), где происходит сингенетическое отложение серы и сероносный ил не содержит ни гипса, ни ангидрита.

Все это означает, что разнообразие теорий и гипотез о происхождении самородной серы – результат не только и не столько неполноты наших знаний, сколько сложности явлений, происходящих в недрах. Еще из элементарной школьной математики все мы знаем, что к одному результату могут привести разные пути. Этот закон распространяется и на геохимию.

Добыча серы

Серные руды добывают разными способами – в зависимости от условий залегания. Но в любом случае приходится уделять много внимания технике безопасности. Залежам серы почти всегда сопутствуют скопления ядовитых газов – соединений серы. К тому же нельзя забывать о возможности ее самовозгорания.

Добыча руды открытым способом происходит так. Шагающие экскаваторы снимают пласты пород, под которыми залегает руда. Взрывами рудный пласт дробят, после чего глыбы руды отправляют на обогатительную фабрику, а оттуда – на сероплавильный завод, где из концентрата извлекают серу. Методы извлечения различны. О некоторых из них будет рассказано ниже. А здесь уместно кратко описать скважинный метод добычи серы из-под земли, позволивший Соединенным Штатам Америки и Мексике стать крупнейшими поставщиками серы.

В конце прошлого века на юге Соединенных Штатов были открыты богатейшие месторождения серной руды. Но подступиться к пластам было непросто: в шахты (а именно шахтным способом предполагалось разрабатывать месторождение) просачивался сероводород и преграждал доступ к сере. Кроме того, пробиться к сероносным пластам мешали песчаные плавуны. Выход нашел химик Герман Фраш, предложивший плавить серу под землей и через скважины, подобные нефтяным, выкачивать ее на поверхность. Сравнительно невысокая (меньше 120°C) температура плавления серы подтверждала реальность идеи Фраша. В 1890 г. начались испытания, приведшие к успеху.

В принципе установка Фраша очень несложна: труба в трубе. В пространство между трубами подается перегретая вода и по нему идет в пласт. А по внутренней, обогреваемой со всех сторон, трубе поднимается расплавленная сера. Современный вариант установки Фраша дополнен третьей – самой узкой трубой. Через нее в скважину подается сжатый воздух, который помогает поднять расплавленную Серу на поверхность. Одно из основных достоинств метода Фраша – в том, что он позволяет уже на первой стадии добычи получить сравнительно чистую серу. При разработке богатых руд этот метод весьма эффективен.

Раньше считалось, что метод подземной выплавки серы применим только в специфических условиях «соляных куполов» тихоокеанского побережья США и Мексики. Однако опыты, проведенные в Польше и СССР, опровергли это мнение. В Польше этим методом уже добывают большое количество серы: в 1968 г. пущены первые серные скважины и в СССР.

А руду, полученную в карьерах и шахтах, приходится перерабатывать (часто с предварительным обогащением), используя для этого различные технологические приемы.

Известно несколько методов получения серы из серных руд: пароводяные, фильтрационные, термические, центрифугальные и экстракционные.

Термические методы извлечения серы – самые старые. Еще в XVIII в. в Неаполитанском королевстве выплавляли серу в кучах – «сольфатарах». До сих пор в Италии выплавляют серу в примитивных печах – «калькаронах». Тепло, необходимое для выплавления серы из руды, получают, сжигая часть добытой серы. Процесс этот малоэффективен, потери достигают 45%.

Италия стала родиной и пароводяных методов извлечения серы из руд. В 1859 г. Джузеппе Джилль получил патент на свой аппарат – предшественник нынешних автоклавов. Автоклавный метод (значительно усовершенствованный, конечно) используется и сейчас во многих странах.

В автоклавном процессе обогащенный концентрат серной руды, содержащий до 80% серы, в виде жидкой пульпы с реагентами подается насосами в автоклав. Туда же под давлением подается водяной пар. Пульпа нагревается до 130°C. Сера, содержащаяся в концентрате, плавится и отделяется от породы. После недолгого отстоя выплавленная сера сливается. Затем из автоклава выпускаются «хвосты» – взвесь пустой породы в воде. Хвосты содержат довольно много серы и вновь поступают на обогатительную фабрику.

В России автоклавный способ был впервые применен инженером К.Г. Паткановым в 1896 г.

Современные автоклавы – это огромные аппараты высотой с четырехэтажный дом. Такие автоклавы установлены, в частности, на сероплавильном заводе Роздольского горно-химического комбината в Прикарпатье.

На некоторых производствах, например на крупном серном комбинате в Тарнобжеге (Польша), пустую породу отделяют от расплавленной серы на специальных фильтрах. Метод разделения серы и пустой породы на центрифугах разработан в нашей стране. Словом, «руду золотую (точнее – золотистую) отделять от породы пустой» можно по-разному.

В последнее время все большее внимание уделяется скважинным геотехнологическим способам добычи серы. На Язовском месторождении в Прикарпатье серу – классический диэлектрик плавят под землей токами высокой частоты и выкачивают на поверхность через скважины, как в методе Фраша. Ученые Института горно-химического сырья предложили способ подземной газификации серы. По этому способу серу поджигают в пласте, а на поверхность выкачивают сернистый газ, который идет на производство серной кислоты и других полезных продуктов.

По-разному и удовлетворяют свои потребности в сере разные страны. Мексика и США используют в основном метод Фраша. Италия, занимающая по добыче серы третье место среди капиталистических государств, продолжает добывать и перерабатывать (разными методами) серные руды сицилийских месторождений и провинции Марке. У Японии есть значительные запасы серы вулканического происхождения. Франция и Канада, не имеющие самородной серы, развили крупное производство ее из газов. Нет собственных серных месторождений и в Англии и ФРГ. Свои потребности в серной кислоте они покрывают за счет переработки серусодержащего сырья (преимущественно пирита), а элементарную серу импортируют из других стран.

Советский Союз и социалистические страны полностью удовлетворяют свои потребности благодаря собственным источникам сырья. После открытия и освоения богатых Прикарпатских месторождений СССР и Польша значительно увеличили производство серы. Эта отрасль промышленности продолжает развиваться. В последние годы построены новые крупные предприятия на Украине, реконструированы старые комбинаты на Волге и в Туркмении, расширено производство серы из природного газа и отходящих газов.

Кристаллы и макромолекулы

В том, что сера – самостоятельный химический элемент, а не соединение, первым убедился великий французский химик Антуан Лоран Лавуазье в XVIII в.

С тех пор представления о сере как элементе изменились не очень сильно, но значительно углубились и дополнились.

Сейчас известно, что элемент №16 состоит из смеси четырех устойчивых изотопов с массовыми числами 32, 33, 34 и 36. Это типичный неметалл.

Лимонно-желтые кристаллы чистой серы полупрозрачны. Форма кристаллов не всегда одинакова. Чаще всего встречается ромбическая сера (наиболее устойчивая модификация) – кристаллы имеют вид октаэдров со срезанными углами. В эту модификацию при комнатной (или близкой к комнатной) температуре превращаются все прочие модификации. Известно, например, что при кристаллизации из расплава (температура плавления серы 119,5°C) сначала получаются игольчатые кристаллы (моноклинная форма). Но эта модификация неустойчива, и при температуре 95,6°C она переходит в ромбическую. Подобный процесс происходит и с другими модификациями серы.

Напомним известный опыт – получение пластической серы.

Если расплавленную серу вылить в холодную воду, образуется эластичная, во многом похожая на резину масса. Ее можно получить и в виде нитей. Но проходит несколько дней, и масса перекристаллизуется, становится жесткой и ломкой.

Молекулы кристаллов серы всегда состоят из восьми атомов (S 8), а различие в свойствах модификаций серы объясняется полиморфизмом – неодинаковым строением кристаллов. Атомы в молекуле серы построены в замкнутый цикл, образующий своеобразный венец. При плавлении связи в цикле рвутся, и циклические молекулы превращаются в линейные.

Необычному поведению серы при плавлении даются различные толкования. Одно из них – такое. При температуре от 155 до 187°, по-видимому, происходит значительный рост молекулярного веса, это подтверждается многократным увеличением вязкости. При 187°C вязкость расплава достигает чуть ли не тысячи пуаз, получается почти твердое вещество. Дальнейший рост температуры приводит к уменьшению вязкости (молекулярный вес падает).

При 300°C сера вновь переходит в текучее состояние, а при 444,6°C закипает.

У паров серы с повышением температуры число атомов в молекуле постепенно уменьшается: S8 → S6 → S4 → (800°C) S 2 . При 1700°C пары серы одноатомны.

Коротко о соединениях серы

По распространенности элемент №16 занимает 15-е место. Содержание серы в земной коре составляет 0,05% по весу. Это немало.

К тому же сера химически активна и вступает в реакции с большинством элементов. Поэтому в природе сера встречается не только в свободном состоянии, но и в виде разнообразных неорганических соединений. Особенно распространены сульфаты (главным образом щелочных и щелочноземельных металлов) и сульфиды (железа, меди, цинка, свинца). Сера есть и в углях, сланцах, нефти, природных газах, в организмах животных и растений.

При взаимодействии серы с металлами, как правило, выделяется довольно много тепла. В реакциях с кислородом сера дает несколько окислов, из них самые важные SO 2 и SO 3 – ангидриды сернистой H 2 SO 3 и серной Н 2 SO 4 кислот. Соединение серы с водородом – сероводород H 2 S – очень ядовитый зловонный газ, всегда присутствующий в местах гниения органических остатков. Земная кора в местах, расположенных близ месторождений серы, часто содержит довольно значительные количества сероводорода. В водном растворе этот газ обладает кислотными свойствами. Хранить его растворы на воздухе нельзя, он окисляется с выделением серы:

2H 2 S + О 2 → 2Н 2 О + 2S.

Сероводород – сильный восстановитель. Этим его свойством пользуются во многих химических производствах.

Для чего нужна сера

Среди вещей, окружающих нас, мало таких, для изготовления которых не нужны были бы сера и ее соединения. Бумага и резина, эбонит и спички, ткани и лекарства, косметика и пластмассы, взрывчатка и краска, удобрения и ядохимикаты – вот далеко не полный перечень вещей и веществ, для производства которых нужен элемент №16. Для того чтобы изготовить, например, автомобиль, нужно израсходовать около 14 кг серы. Можно без преувеличения сказать, что промышленный потенциал страны довольно точно определяется потреблением серы.

Значительную часть мировой добычи серы поглощает бумажная промышленность (соединения серы помогают выделить целлюлозу). Для того чтобы произвести 1 т целлюлозы, нужно затратить более 100 кг серы. Много элементарной серы потребляет и резиновая промышленность – для вулканизации каучуков.

В сельском хозяйстве сера применяется как в элементарном виде, так и в различных соединениях. Она входит в состав минеральных удобрений и препаратов для борьбы с вредителями. Наряду с фосфором, калием и другими элементами сера необходима растениям. Впрочем, большая часть вносимой в почву серы не усваивается ими, но помогает усваивать фосфор. Серу вводят в почву вместе с фосфоритной мукой. Имеющиеся в почве бактерии окисляют ее, образующиеся серная и сернистая кислоты реагируют с фосфоритами, и в результате получаются фосфорные соединения, хорошо усваиваемые растениями.

Однако основной потребитель серы – химическая промышленность. Примерно половина добываемой в мире серы идет на производство серной кислоты. Чтобы получить 1 т H 2 SО 4 , нужно сжечь около 300 кг серы. А роль серной кислоты в химической промышленности сравнима с ролью хлеба в нашем питании.

Значительное количество серы (и серной кислоты) расходуется при производстве взрывчатых веществ и спичек. Чистая, освобожденная от примесей сера нужна для производства красителей и светящихся составов.

Соединения серы находят применение в нефтехимической промышленности. В частности, они необходимы при производстве антидетонаторов, смазочных веществ для аппаратуры сверхвысоких давлений; в охлаждающих маслах, ускоряющих обработку металла, содержится иногда до 18% серы.

Перечисление примеров, подтверждающих первостепенную важность элемента №16, можно было бы продолжить, но «нельзя объять необъятное». Поэтому вскользь упомянем, что сера необходима и таким отраслям промышленности, как горнодобывающая, пищевая, текстильная, и – поставим точку.

Наш век считается веком «экзотических» материалов – трансурановых элементов, титана, полупроводников и так далее. Но внешне непритязательный, давно известный элемент №16 продолжает оставаться абсолютно необходимым. Подсчитано, что в производстве 88 из 150 важнейших химических продуктов используют либо саму серу, либо ее соединения.

Из древних и средневековых книг

«Сера применяется для очищения жилищ, так как многие держатся мнения, что запах и горение серы могут предохранить от всяких чародейств и прогнать всякую нечистую силу».

Плиний Старший, «Естественная история» I в. н.э.

«Если травы чахлы, бедны соками, а ветви и листва деревьев имеют окраску тусклую, грязную, темноватую вместо блестящего зеленого цвета, это признак, что подпочва изобилует минералами, в которых господствует сера».

«Если руда очень богата серой, ее зажигают на широком железном листе с множеством отверстий, через которые сера вытекает в горшки, наполненные доверху водой».

«Сера входит также в состав ужасного изобретения – порошка, который может метать далеко вперед куски железа, бронзы или камня – орудие войны нового тина».

Агрикола, «О царстве минералов», XVI в.

Как испытывали серу в XIV веке

«Если ты хочешь испытать серу, хороша она или нет, то возьми кусок серы в руку и поднеси к уху. Если сера трещит так, что ты слышишь ее треск, значит она хороша; если же сера молчит и не трещит, то она нехороша...»

Этот своеобразный метод определения качества материала на слух (применительно к сере) может быть использован и сейчас. Экспериментально подтвердилось, что «трещит» только сера, содержащая не больше одного процента примесей. Иногда дело не ограничивается только треском – кусок серы раскалывается на части.

Удушающий серный газ

Как известно, выдающийся естествоиспытатель древности Плиний Старший погиб в 79 г. н.э. при извержении вулкана. Его племянник в письме историку Тациту писал: «...Вдруг раздались раскаты грома, и от горного пламени покатились вниз черные серные пары. Все разбежались. Плиний поднялся и, опираясь на двух рабов, думал тоже уйти; но смертоносный пар окружил его со всех сторон, его колени подогнулись, он снова упал и задохся».

«Черные серные пары», погубившие Плиния, состояли, конечно, не только из парообразной серы. В состав вулканических газов входят и сероводород, и двуокись серы. Эти газы обладают не только резким запахом, но и большой токсичностью. Особенно опасен сероводород. В чистом виде он убивает человека почти мгновенно. Опасность велика даже при незначительном (порядка 0,01%) содержании сероводорода в воздухе. Сероводород тем более опасен, что он может накапливаться в организме. Он соединяется с железом, входящим в состав гемоглобина, что может привести к тяжелейшему кислородному голоданию и смерти. Сернистый газ (двуокись серы) менее токсичен, однако выпуск его в атмосферу приводил к тому, что вокруг металлургических заводов гибла вся растительность. Поэтому на всех предприятиях, производящих или использующих эти газы; вопросам техники безопасности уделяется особое внимание.

Сернистый газ и соломенная шляпка

Соединяясь с водой, сернистый газ образует слабую сернистую кислоту Н 2 SO 3 , существующую только в растворах. В присутствии влаги сернистый газ обесцвечивает многие красители. Это свойство используется для отбелки шерсти, шелка, соломы. Но такие соединения, как правило, не обладают большой стойкостью, и белые соломенные шляпки со временем приобретают первоначальную грязно-желтую окраску.

Сернистый ангидрид SO 3 в обычных условиях представляет собой бесцветную очень летучую жидкость, кипящую при 44,8°C. Твердеет он при –16,8°C и становится очень похожим на обыкновенный лед. Но есть и другая – полимерная модификация твердого серного ангидрида (формулу его в этом случае следовало бы писать (SO 3) n ). Внешне она очень похожа на асбест, ее волокнистую структуру подтверждают рентгенограммы. Строго определенной точки плавления эта модификация не имеет, что свидетельствует о ее неоднородности.

Гипс и алебастр

Гипс CaSO 4 · 2Н 2 O – один из самых распространенных минералов. Но распространенные в медицинской практике «гипсовые шины» делаются не из природного гипса, а из алебастра. Алебастр отличается от гипса только количеством кристаллизационной воды в молекуле, его формула 2CaSO 4 · Н 2 O. При «варке» алебастра (процесс идет при 160...170°C в течение 1,5...2 часов) гипс теряет три четверти кристаллизационной воды, и материал приобретает вяжущие свойства. Алебастр жадно захватывает воду, при этом происходит быстрая беспорядочная кристаллизация. Разрастись кристаллики не успевают, но сплетаются друг с другом; масса, образованная ими, в мельчайших подробностях воспроизводит форму, в которой происходит твердение. Химизм происходящего в это время процесса обратен происходящему при варке: алебастр превращается в гипс. Поэтому отливка – гипсовая, маска – гипсовая, повязка – тоже гипсовая, а делаются они из алебастра.

Глауберова соль

Соль Na 2 SO 4 · 10H 2 O, открытая крупнейшим немецким химиком XVII в. Иоганном Рудольфом Глаубером и названная в его честь, до сих пор широко применяется в медицине, стеклоделии, кристаллографических исследованиях. Глаубер так описывал ее: «Эта соль, если она хорошо приготовлена, имеет вид льда; она образует длинные, совершенно прозрачные кристаллы, которые растапливаются на языке, как лед. У нее вкус обыкновенной соли, без всякой едкости. Брошенная на пылающие угли, она не растрескивается с шумом, как обыкновенная кухонная соль, и не воспламеняется со взрывом, как селитра. Она без запаха и выносит любую степень жара. Ее можно применять с выгодой в медицине как снаружи, так и внутрь. Она заживляет свежие раны, не раздражая их. Это превосходное внутреннее лекарство: будучи растворена в воде и дана больному, она очищает кишки».

Минерал глауберовой соли называется мирабилитом (от латинского «mirabilis» – удивительный). Название происходит от имени, которое дал Глаубер открытой им соли; он назвал ее чудесной. Крупнейшие в мире разработки этого вещества находятся в нашей стране, чрезвычайно богата глауберовой солью вода знаменитого залива Кара-Богаз-Гол. Дно залива буквально устлано ею.

Сульфиты, сульфаты, тиосульфаты...

Если вы фотолюбитель, вам необходим фиксаж, т.е. натриевая соль серноватистой (тиосерной) кислоты Н 2 S 2 O 3 . Тиосульфат натрия Na 2 S 2 O 3 (он же гипосульфит) служил поглотителем хлора в первых противогазах.

Если вы порезались во время бритья, кровь можно остановить кристаллом алюмокалиевых квасцов KAl(SO 4) 2 · 12H 2 O.

Если вы хотите побелить потолки, покрыть медью какой-либо предмет или уничтожить вредителей в саду – вам не обойтись без темно-синих кристаллов медного купороса CuSO 4 · 5Н 2 О.

Бумага, на которой напечатана эта книга, сделана с помощью гидросульфита кальция Са(НSO 3) 2 .

Широко используются также железный купорос FeSO 4 · 7H 2 O, хромовые квасцы K 2 SO 4 · Cr 2 (SO 4) 3 · 2Н 2 O и многие другие соли серной, сернистой и тиосерной кислот.

Киноварь

Если в лаборатории разлили ртуть (возникла опасность отравления ртутными парами!), ее первым делом собирают, а те места, из которых серебристые капли не извлекаются, засыпают порошкообразной серой. Ртуть и сера вступают в реакцию даже в твердом состоянии – при простом соприкосновении. Образуется кирпично-красная киноварь – сульфид ртути – химически крайне инертное и безвредное вещество.

Выделить ртуть из киновари несложно. Многие другие металлы, в частности железо, вытесняют ртуть из киновари.

Серобактерии

В природе постепенно происходит круговорот серы, подобный круговороту азота или углерода. Растения потребляют серу – ведь ее атомы входят в состав белка. Растения берут серу из растворимых сульфатов, а гнилостные бактерии превращают серу белков в сероводород (отсюда – отвратительный запах гниения).

Но есть так называемые серобактерии, которым вообще не нужна органическая пища. Они питаются сероводородом, и в их организмах в результате реакции между H 2 S, CO 2 и О 2 образуются углеводы и элементарная сера. Серобактерии нередко оказываются переполнены крупинками серы – почти всю их массу составляет сера с очень небольшой «добавкой» органических веществ.

Сера – фармацевтам

Все сульфамидные препараты – сульфидин, сульфазол, норсульфазол, сульгин, сульфодимезин, стрептоцид и другие подавляют активность многочисленных микробов. И все эти лекарства – органические соединения серы. Вот структурные формулы некоторых из них:

После появления антибиотиков роль сульфамидных препаратов несколько уменьшилась. Впрочем, и многие антибиотики можно рассматривать как органические производные серы. В частности, она обязательно входит в состав пенициллина.

Мелкодисперсная элементарная сера – основа мазей, применяемых при лечении грибковых заболеваний кожи.

Нитрид серы проводит ток

В 1975 г. журнал «Кэмикл энд инжениринг ньюс» сообщил о получении нового неорганического полимера, у которого многие свойства – как у металла. Полимерный нитрид серы – политиазил (SN) n легко прессуется и куется, его электропроводность близка к электропроводности ртути. При этом пленки из политиазила не одинаково проводят ток в продольном и поперечном направлении. Это объясняется тем, что пленка построена из упорядоченных, расположенных параллельно друг другу полимерных волокон.

Что можно построить из серы

В 70-х годах в некоторых странах мира производство серы превысило потребности в ней. Поэтому сере стали искать новые применения, прежде всего в таких материалоемких областях, как строительство. В результате этих поисков появились серный пенопласт – как теплоизоляционный материал, бетонные смеси, в которых серой частично или полностью заменен портландцемент, покрытия для автострад, содержащие элементарную серу.


Очень популярная тема в интернете, потому что очень эффектная и шокирующая. Кратер вулкана Иджен (Ijen Volcano) - один из самых привлекательных и опасных на Земле. Активный вулкан, постоянно извергающий клубы серного дыма, крупнейшее в мире кислотное озеро Кава Иджен (Kawah Ijen), невероятный по своей красоте синий огонь и нечеловеческие условия работы шахтеров, добывающих серу.

Не уж то это до сих пор происходит, задают себе вопрос многие. Давайте попробуем тут собрать наиболее полную информацию об этом месте.

Фото 2.

На самом деле Иджен - это не просто вулкан, а вулканический комплекс, из более чем из десятка вулканических объектов: стратовулканов, вулканических конусов, кратеров, расположенных в радиусе 20 км вокруг кальдеры.

Но туристов привлекает именно кратер с кислотным озером, берега которого являются естественным крупным месторождением природной серы. Кратер в радиусе составляет 361 метр и имеет глубину 200 метров.

Озеро Кава (Kawah) в кратере вулкана Иджен — это самое большое кислотное озеро в мире. Оно состоит из растворенной в воде концентрированных соляной и серной кислоты. Вулкан выбрасывает хлористый водород с виде газа. Взаимодействуя с водой, он образовывает серную кислоту с PH около нуля. Растворённая в воде соляная кислота и придает озеру красивый бирюзовый цвет.

Озеро является смертельно опасным, тем не менее его можно потрогать рукой. Температура на поверхности составляет 50-60°С, а в глубине — свыше 200°С. Глубина озера достигает 200 метров.

Фото 4.

Удивительное явление синего огня - это на самом деле сернистый газ, горящий при температуре 600°С, что и придает огню характерный синий цвет. Свечение достаточно слабое, поэтому увидеть его можно только ночью.

Порой серу поджигают сами рабочие. Часть дыма конденсируется в установленных в кратере керамических трубах и вытекает из труб, образуя сталактиты натуральной серы. Жидкая сера красного цвета извергается из вентиляционных отверстий и охлаждается до желтого на поверхности. Эти сталактиты, кстати, продают туристам в качестве сувениров.

Вот такие эффектные фотографии сделал известный французский фотограф Оливье Грюневальда, совершивший несколько путешествий в серные рудники в кратере вулкана Kawaha Ijen. Там он сделал при помощи специального оборудования захватывающие сюрреалистичные фотографии этого места в лунном свете, освещенного факелами и синем пламенем горящей расплавленной серы.


Потоки лавы, горящей синим пламенем, можно наблюдать на Иджене крайне редко. К сожалению, многие сайты показывают фотографии Оливьера Грюневальда и создают впечатление, что это происходит каждую ночь. Не верьте! Обычно горит только сернистый газ и нет никакой лавы.

Фото 5.

В кратере местные жители вручную добывают серу. Это очень тяжелая и опасная работа. Без защитных костюмов, а многие даже без масок, шахтеры ломами откалывают куски серы и помещают их в корзину. Эти корзины они несут 200 метров к вершине кратера, а потом спускаются 3 км к подножью вулкана в деревню, где и получают вознаграждение за проделанную работу. Вес такой корзины 60-80 кг, некоторые умудряются поднимать до 90 кг.

Фото 6.

Обычно рабочие проделывают такое путешествие дважды в день. За 1 кг серы платят 900-1000 IDR, это значит около 5$ за корзину или 10$ в день. По местным меркам это высокооплачиваемая и престижная работа. На острове Ява очень высокая плотность населения и безработица. Шахтеры, добывающие серу, являются своеобразной рабочей элитой.


Однако это никак не помогает им долго жить. Серные пары настолько опасны для здоровья, что молодые парни выглядят стариками, а средняя продолжительность жизни около 47 лет.

Фото 7.

Несмотря на ужасающие условия труда, рабочие — удивительно приветливые и жизнерадостные люди. Вот что пишет : Я испытала культурный шок, когда рабочий, на плечах которого корзина, вес которой превышает его собственный, уступил мне дорогу на камнях, ведущих к вершине кратера. Много раз нам подсказывали более удачный путь и с удовольствием позировали туристам.

Лучшее, что вы можете сделать для рабочих - подарить им респиратор или хотя бы просто защитную маску. Они не могут позволить себе купить даже сменные фильтры, нет ни денег, ни возможности. Многие рабочие даже не знают о том, что воздух, которым они дышат опасен.

Рабочие все как один курят. Говорят, что это им помогает немного сбить запах серы, который становится просто невозможным через какое-то время.

Фото 7.

можно посмотреть путешествие блогера по этим рудникам.


Чтобы люди могли представить всю опасность озера для жизней своих, был проведен эксперимент. В озеро на 20 минут опустили лист алюминия, уже при погружении он стал покрываться пузырями, а по прошествии всего времени, алюминиевый лист стал тонким, словно кусок ткани.

Фото 8.

На дне кратера сборщики серы оборудуют небольшой палаточный лагерь, в котором живут какое-то время, пока ведут на этом месте добычу. Как только сера извергается в другом месте, они перемещаются к нему. Таких «залежей» здесь несколько. Они оборудованы трубами, из которых стекает расплавленная сера. Когда она остывает и затвердевает, рабочие начинают ее собирать.

Фото 9.

Серу собирают в две корзины, соединенные между собой перекладиной из бамбука. Спасаясь от ядовитых паров, сборщики придумали собственное средство защиты. Представляет оно собой обычный кусок намоченной хлопчатобумажной ткани. Они сжимают его зубами и дышат через него или же просто обматывают тканью часть лица.

Фото 10.

Фото 11.

Фото 12.

Фото 13.

Фото 14.

Фото 15.

Фото 16.

Фото 17.

Фото 18.

Фото 19.

Фото 20.

Вследствие активности вулкана в кратере сквозь трещины постоянно выделяется сернистый пар. Горячий пар проходит через специально проложенные трубы, охлаждается вниз и стекает по склону кратера, постепенно затвердевая. Технология добычи весьма примитивна, но в данном случае большего и не нужно. Далее за дело берутся старатели, которые ломами и арматурой разбивают глыбы серы на куски, складывают в корзины и относят в приемный пункт. Для этого приходится преодолеть около 2500 метров по пересеченной местности с грузом в 45-90 кг на плечах.

Рабочие не используют специальных средств защиты, иногда только закрываясь платками. В противогазах и респираторах здесь появляются только пожарные, которые тушат горящую серу. Работают здесь вахтовым методом по 15 дней.

Добытая сера используется для вулканизации резины, обесцвечивания сахара и других промышленных процессов. Рабочие делают из нее маленькие сувениры на продажу, отливая из расплавленной серы различные фигурки.

Фото 21.

Фото 22.

Фото 23.

Фото 24.

Фото 25.



Индонезийский рабочий показывает купоны на оплату заработанных средств за доставленный груз серы из жерла вулкана Кава Иджен в восточной части острова Ява, Индонезия. Три купона — три ходки в жерло вулкана.

Фото 26.

Фото 27.

Фото 28.

Фото 29.

Фото 30.

Фото 31.

Фото 32.

Фото 33.

Фото 34.

Фото 35.

Фото 36.

Фото 37.

Фото 38.

Фото 39.

Фото 40.

Фото 42.

Фото 43.


Фото 44.

Фото 45.

Фото 46.

Фото 47.

Фото 48.

Фото 49.

Фото 50.

Фото 51.

Фото 52.

Фото 53.

Фото 54.

Фото 55.

Фото 56.

Фото 57.

Фото 58.

Фото 59.

Фото 60.

Фото 61.

Фото 1.

Фото 2.

Фото 4.

Фото 6.

Сера – одно из немногих веществ, которыми уже несколько тысяч лет назад оперировали первые «химики». Она стала служить человечеству задолго до того, как заняла в таблице Менделеева клетку под №16.

Об одном из самых древних (хотя и гипотетических!) применений серы рассказывают многие старинные книги. Как источник тепла при термообработке грешников серу живописуют и Новый и Ветхий заветы. И если книги такого рода не дают достаточных оснований для археологических раскопок в поисках остатков райских кущ или геенны огненной, то их свидетельство о том, что древние были знакомы с серой и некоторыми ее свойствами, можно принять на веру.

Одна из причин этой известности – распространенность самородной серы в странах древнейших цивилизаций. Месторождения этого желтого горючего вещества разрабатывались греками и римлянами, особенно в Сицилии, которая вплоть до конца прошлого века славилась в основном серой.

С древнейших времен серу использовали для религиозно-мистических целей, ее зажигали при различных церемониях и ритуалах. Но так же давно элемент №16 приобрел и вполне мирские назначения: серой чернили оружие, ее употребляли при изготовлении косметических и лекарственных мазей, ее жгли для отбелки тканей и для борьбы с насекомыми. Добыча серы значительно увеличилась после того, как был изобретен черный порох. Ведь сера (вместе с углем и селитрой) – непременный его компонент.

И сейчас пороховое производство потребляет часть добываемой серы, правда весьма незначительную. В наше время сера – один из важнейших видов сырья для многих химических производств. И в этом причина непрерывного роста мирового производства серы.

Происхождение серы

Большие скопления самородной серы встречаются не так уж часто. Чаще она присутствует в некоторых рудах. Руда самородной серы – это порода с вкраплениями серы.

Когда образовались эти вкрапления – одновременно с сопутствующими породами или позже? От ответа на этот вопрос зависит направление поисковых и разведочных работ. Но, несмотря на тысячелетия общения с серой, человечество до сих пор не имеет однозначного ответа. Существует несколько теорий, авторы которых придерживаются противоположных взглядов.

Теория сингенеза (т.е. одновременного образования серы и вмещающих пород) предполагает, что образование самородной серы происходило в мелководных бассейнах. Особые бактерии восстанавливали сульфаты, растворенные в воде, до сероводорода, который поднимался вверх, попадал в окислительную зону и здесь химическим путем или при участии других бактерий окислялся до элементарной серы. Сера осаждалась на дно, и впоследствии содержащий серу ид образовал руду.

Теория эпигенеза (вкрапления серы образовались позднее, чем основные породы) имеет несколько вариантов. Самый распространенный из них предполагает, что подземные воды, проникая сквозь толщи пород, обогащаются сульфатами. Если такие воды соприкасаются с месторождениями нефти или природного газа, то ионы сульфатов восстанавливаются углеводородами до сероводорода. Сероводород поднимается к поверхности и, окисляясь, выделяет чистую серу в пустотах и трещинах пород.

В последние десятилетия находит все новые подтверждения одна из разновидностей теории эпигенеза – теория метасоматоза (в переводе с греческого «метасоматоз» означает «замещение». Согласно ей в недрах постоянно происходит превращение гипса CaSO 4 · 2H 2 O и ангидрита CaSO 4 в серу и кальцит СаCO 3 . Эта теория создана в 1935 г. советскими учеными Л.М. Миропольским и Б.П. Кротовым. В ее пользу говорит, в частности, такой факт.

В 1961 г. в Ираке было открыто месторождение Мишрак. Сера здесь заключена в карбонатных породах, которые образуют свод, поддерживаемый уходящими вглубь опорами (в геологии их называют крыльями). Крылья эти состоят в основном из ангидрита и гипса. Такая же картина наблюдалась на отечественном месторождении Шор-Су.

Геологическое своеобразие этих месторождений можно объяснить только с позиций теории метасоматоза: первичные гипсы и ангидриты превратились во вторичные карбонатные руды с вкраплениями самородной серы. Важно не только соседство минералов – среднее содержание серы в руде этих месторождений равно содержанию химически связанной серы в ангидрите. А исследования изотопного состава серы и углерода в руде этих месторождений дали сторонникам теории метасоматоза дополнительные аргументы.

Но есть одно «но»: химизм процесса превращения гипса в серу и кальцит пока не ясен, и потому нет оснований считать теорию метасоматоза единственно правильной. На Земле и сейчас существуют озера (в частности, Серное озеро близ Серноводска), где происходит сингенетическое отложение серы и сероносный ил не содержит ни гипса, ни ангидрита.

Все это означает, что разнообразие теорий и гипотез о происхождении самородной серы – результат не только и не столько неполноты наших знаний, сколько сложности явлений, происходящих в недрах. Еще из элементарной школьной математики все мы знаем, что к одному результату могут привести разные пути. Этот закон распространяется и на геохимию.

Добыча серы

Серные руды добывают разными способами – в зависимости от условий залегания. Но в любом случае приходится уделять много внимания технике безопасности. Залежам серы почти всегда сопутствуют скопления ядовитых газов – соединений серы. К тому же нельзя забывать о возможности ее самовозгорания.

Добыча руды открытым способом происходит так. Шагающие экскаваторы снимают пласты пород, под которыми залегает руда. Взрывами рудный пласт дробят, после чего глыбы руды отправляют на обогатительную фабрику, а оттуда – на сероплавильный завод, где из концентрата извлекают серу. Методы извлечения различны. О некоторых из них будет рассказано ниже. А здесь уместно кратко описать скважинный метод добычи серы из-под земли, позволивший Соединенным Штатам Америки и Мексике стать крупнейшими поставщиками серы.

В конце прошлого века на юге Соединенных Штатов были открыты богатейшие месторождения серной руды. Но подступиться к пластам было непросто: в шахты (а именно шахтным способом предполагалось разрабатывать месторождение) просачивался сероводород и преграждал доступ к сере. Кроме того, пробиться к сероносным пластам мешали песчаные плавуны. Выход нашел химик Герман Фраш, предложивший плавить серу под землей и через скважины, подобные нефтяным, выкачивать ее на поверхность. Сравнительно невысокая (меньше 120°C) температура плавления серы подтверждала реальность идеи Фраша. В 1890 г. начались испытания, приведшие к успеху.

В принципе установка Фраша очень несложна: труба в трубе. В пространство между трубами подается перегретая вода и по нему идет в пласт. А по внутренней, обогреваемой со всех сторон, трубе поднимается расплавленная сера. Современный вариант установки Фраша дополнен третьей – самой узкой трубой. Через нее в скважину подается сжатый воздух, который помогает поднять расплавленную Серу на поверхность. Одно из основных достоинств метода Фраша – в том, что он позволяет уже на первой стадии добычи получить сравнительно чистую серу. При разработке богатых руд этот метод весьма эффективен.

Раньше считалось, что метод подземной выплавки серы применим только в специфических условиях «соляных куполов» тихоокеанского побережья США и Мексики. Однако опыты, проведенные в Польше и СССР, опровергли это мнение. В Польше этим методом уже добывают большое количество серы: в 1968 г. пущены первые серные скважины и в СССР.

А руду, полученную в карьерах и шахтах, приходится перерабатывать (часто с предварительным обогащением), используя для этого различные технологические приемы.

Известно несколько методов получения серы из серных руд: пароводяные, фильтрационные, термические, центрифугальные и экстракционные.

Термические методы извлечения серы – самые старые. Еще в XVIII в. в Неаполитанском королевстве выплавляли серу в кучах – «сольфатарах». До сих пор в Италии выплавляют серу в примитивных печах – «калькаронах». Тепло, необходимое для выплавления серы из руды, получают, сжигая часть добытой серы. Процесс этот малоэффективен, потери достигают 45%.

Италия стала родиной и пароводяных методов извлечения серы из руд. В 1859 г. Джузеппе Джилль получил патент на свой аппарат – предшественник нынешних автоклавов. Автоклавный метод (значительно усовершенствованный, конечно) используется и сейчас во многих странах.

В автоклавном процессе обогащенный концентрат серной руды, содержащий до 80% серы, в виде жидкой пульпы с реагентами подается насосами в автоклав. Туда же под давлением подается водяной пар. Пульпа нагревается до 130°C. Сера, содержащаяся в концентрате, плавится и отделяется от породы. После недолгого отстоя выплавленная сера сливается. Затем из автоклава выпускаются «хвосты» – взвесь пустой породы в воде. Хвосты содержат довольно много серы и вновь поступают на обогатительную фабрику.

В России автоклавный способ был впервые применен инженером К.Г. Паткановым в 1896 г.

Современные автоклавы – это огромные аппараты высотой с четырехэтажный дом. Такие автоклавы установлены, в частности, на сероплавильном заводе Роздольского горно-химического комбината в Прикарпатье.

На некоторых производствах, например на крупном серном комбинате в Тарнобжеге (Польша), пустую породу отделяют от расплавленной серы на специальных фильтрах. Метод разделения серы и пустой породы на центрифугах разработан в нашей стране. Словом, «руду золотую (точнее – золотистую) отделять от породы пустой» можно по-разному.

В последнее время все большее внимание уделяется скважинным геотехнологическим способам добычи серы. На Язовском месторождении в Прикарпатье серу – классический диэлектрик плавят под землей токами высокой частоты и выкачивают на поверхность через скважины, как в методе Фраша. Ученые Института горно-химического сырья предложили способ подземной газификации серы. По этому способу серу поджигают в пласте, а на поверхность выкачивают сернистый газ, который идет на производство серной кислоты и других полезных продуктов.

По-разному и удовлетворяют свои потребности в сере разные страны. Мексика и США используют в основном метод Фраша. Италия, занимающая по добыче серы третье место среди капиталистических государств, продолжает добывать и перерабатывать (разными методами) серные руды сицилийских месторождений и провинции Марке. У Японии есть значительные запасы серы вулканического происхождения. Франция и Канада, не имеющие самородной серы, развили крупное производство ее из газов. Нет собственных серных месторождений и в Англии и ФРГ. Свои потребности в серной кислоте они покрывают за счет переработки серусодержащего сырья (преимущественно пирита), а элементарную серу импортируют из других стран.

Советский Союз и социалистические страны полностью удовлетворяют свои потребности благодаря собственным источникам сырья. После открытия и освоения богатых Прикарпатских месторождений СССР и Польша значительно увеличили производство серы. Эта отрасль промышленности продолжает развиваться. В последние годы построены новые крупные предприятия на Украине, реконструированы старые комбинаты на Волге и в Туркмении, расширено производство серы из природного газа и отходящих газов.

Кристаллы и макромолекулы

В том, что сера – самостоятельный химический элемент, а не соединение, первым убедился великий французский химик Антуан Лоран Лавуазье в XVIII в.

С тех пор представления о сере как элементе изменились не очень сильно, но значительно углубились и дополнились.

Сейчас известно, что элемент №16 состоит из смеси четырех устойчивых изотопов с массовыми числами 32, 33, 34 и 36. Это типичный неметалл.

Лимонно-желтые кристаллы чистой серы полупрозрачны. Форма кристаллов не всегда одинакова. Чаще всего встречается ромбическая сера (наиболее устойчивая модификация) – кристаллы имеют вид октаэдров со срезанными углами. В эту модификацию при комнатной (или близкой к комнатной) температуре превращаются все прочие модификации. Известно, например, что при кристаллизации из расплава (температура плавления серы 119,5°C) сначала получаются игольчатые кристаллы (моноклинная форма). Но эта модификация неустойчива, и при температуре 95,6°C она переходит в ромбическую. Подобный процесс происходит и с другими модификациями серы.

Напомним известный опыт – получение пластической серы.

Если расплавленную серу вылить в холодную воду, образуется эластичная, во многом похожая на резину масса. Ее можно получить и в виде нитей. Но проходит несколько дней, и масса перекристаллизуется, становится жесткой и ломкой.

Молекулы кристаллов серы всегда состоят из восьми атомов (S 8), а различие в свойствах модификаций серы объясняется полиморфизмом – неодинаковым строением кристаллов. Атомы в молекуле серы построены в замкнутый цикл, образующий своеобразный венец. При плавлении связи в цикле рвутся, и циклические молекулы превращаются в линейные.

Необычному поведению серы при плавлении даются различные толкования. Одно из них – такое. При температуре от 155 до 187°, по-видимому, происходит значительный рост молекулярного веса, это подтверждается многократным увеличением вязкости. При 187°C вязкость расплава достигает чуть ли не тысячи пуаз, получается почти твердое вещество. Дальнейший рост температуры приводит к уменьшению вязкости (молекулярный вес падает).

При 300°C сера вновь переходит в текучее состояние, а при 444,6°C закипает.

У паров серы с повышением температуры число атомов в молекуле постепенно уменьшается: S8 → S6 → S4 → (800°C) S 2 . При 1700°C пары серы одноатомны.

Коротко о соединениях серы

По распространенности элемент №16 занимает 15-е место. Содержание серы в земной коре составляет 0,05% по весу. Это немало.

К тому же сера химически активна и вступает в реакции с большинством элементов. Поэтому в природе сера встречается не только в свободном состоянии, но и в виде разнообразных неорганических соединений. Особенно распространены сульфаты (главным образом щелочных и щелочноземельных металлов) и сульфиды (железа, меди, цинка, свинца). Сера есть и в углях, сланцах, нефти, природных газах, в организмах животных и растений.

При взаимодействии серы с металлами, как правило, выделяется довольно много тепла. В реакциях с кислородом сера дает несколько окислов, из них самые важные SO 2 и SO 3 – ангидриды сернистой H 2 SO 3 и серной Н 2 SO 4 кислот. Соединение серы с водородом – сероводород H 2 S – очень ядовитый зловонный газ, всегда присутствующий в местах гниения органических остатков. Земная кора в местах, расположенных близ месторождений серы, часто содержит довольно значительные количества сероводорода. В водном растворе этот газ обладает кислотными свойствами. Хранить его растворы на воздухе нельзя, он окисляется с выделением серы:

2H 2 S + О 2 → 2Н 2 О + 2S.

Сероводород – сильный восстановитель. Этим его свойством пользуются во многих химических производствах.

Для чего нужна сера

Среди вещей, окружающих нас, мало таких, для изготовления которых не нужны были бы сера и ее соединения. Бумага и резина, эбонит и спички, ткани и лекарства, косметика и пластмассы, взрывчатка и краска, удобрения и ядохимикаты – вот далеко не полный перечень вещей и веществ, для производства которых нужен элемент №16. Для того чтобы изготовить, например, автомобиль, нужно израсходовать около 14 кг серы. Можно без преувеличения сказать, что промышленный потенциал страны довольно точно определяется потреблением серы.

Значительную часть мировой добычи серы поглощает бумажная промышленность (соединения серы помогают выделить целлюлозу). Для того чтобы произвести 1 т целлюлозы, нужно затратить более 100 кг серы. Много элементарной серы потребляет и резиновая промышленность – для вулканизации каучуков.

В сельском хозяйстве сера применяется как в элементарном виде, так и в различных соединениях. Она входит в состав минеральных удобрений и препаратов для борьбы с вредителями. Наряду с фосфором, калием и другими элементами сера необходима растениям. Впрочем, большая часть вносимой в почву серы не усваивается ими, но помогает усваивать фосфор. Серу вводят в почву вместе с фосфоритной мукой. Имеющиеся в почве бактерии окисляют ее, образующиеся серная и сернистая кислоты реагируют с фосфоритами, и в результате получаются фосфорные соединения, хорошо усваиваемые растениями.

Однако основной потребитель серы – химическая промышленность. Примерно половина добываемой в мире серы идет на производство серной кислоты. Чтобы получить 1 т H 2 SО 4 , нужно сжечь около 300 кг серы. А роль серной кислоты в химической промышленности сравнима с ролью хлеба в нашем питании.

Значительное количество серы (и серной кислоты) расходуется при производстве взрывчатых веществ и спичек. Чистая, освобожденная от примесей сера нужна для производства красителей и светящихся составов.

Соединения серы находят применение в нефтехимической промышленности. В частности, они необходимы при производстве антидетонаторов, смазочных веществ для аппаратуры сверхвысоких давлений; в охлаждающих маслах, ускоряющих обработку металла, содержится иногда до 18% серы.

Перечисление примеров, подтверждающих первостепенную важность элемента №16, можно было бы продолжить, но «нельзя объять необъятное». Поэтому вскользь упомянем, что сера необходима и таким отраслям промышленности, как горнодобывающая, пищевая, текстильная, и – поставим точку.

Наш век считается веком «экзотических» материалов – трансурановых элементов, титана, полупроводников и так далее. Но внешне непритязательный, давно известный элемент №16 продолжает оставаться абсолютно необходимым. Подсчитано, что в производстве 88 из 150 важнейших химических продуктов используют либо саму серу, либо ее соединения.

Из древних и средневековых книг

«Сера применяется для очищения жилищ, так как многие держатся мнения, что запах и горение серы могут предохранить от всяких чародейств и прогнать всякую нечистую силу».

Плиний Старший, «Естественная история» I в. н.э.

«Если травы чахлы, бедны соками, а ветви и листва деревьев имеют окраску тусклую, грязную, темноватую вместо блестящего зеленого цвета, это признак, что подпочва изобилует минералами, в которых господствует сера».

«Если руда очень богата серой, ее зажигают на широком железном листе с множеством отверстий, через которые сера вытекает в горшки, наполненные доверху водой».

«Сера входит также в состав ужасного изобретения – порошка, который может метать далеко вперед куски железа, бронзы или камня – орудие войны нового тина».

Агрикола, «О царстве минералов», XVI в.

Как испытывали серу в XIV веке

«Если ты хочешь испытать серу, хороша она или нет, то возьми кусок серы в руку и поднеси к уху. Если сера трещит так, что ты слышишь ее треск, значит она хороша; если же сера молчит и не трещит, то она нехороша...»

Этот своеобразный метод определения качества материала на слух (применительно к сере) может быть использован и сейчас. Экспериментально подтвердилось, что «трещит» только сера, содержащая не больше одного процента примесей. Иногда дело не ограничивается только треском – кусок серы раскалывается на части.

Удушающий серный газ

Как известно, выдающийся естествоиспытатель древности Плиний Старший погиб в 79 г. н.э. при извержении вулкана. Его племянник в письме историку Тациту писал: «...Вдруг раздались раскаты грома, и от горного пламени покатились вниз черные серные пары. Все разбежались. Плиний поднялся и, опираясь на двух рабов, думал тоже уйти; но смертоносный пар окружил его со всех сторон, его колени подогнулись, он снова упал и задохся».

«Черные серные пары», погубившие Плиния, состояли, конечно, не только из парообразной серы. В состав вулканических газов входят и сероводород, и двуокись серы. Эти газы обладают не только резким запахом, но и большой токсичностью. Особенно опасен сероводород. В чистом виде он убивает человека почти мгновенно. Опасность велика даже при незначительном (порядка 0,01%) содержании сероводорода в воздухе. Сероводород тем более опасен, что он может накапливаться в организме. Он соединяется с железом, входящим в состав гемоглобина, что может привести к тяжелейшему кислородному голоданию и смерти. Сернистый газ (двуокись серы) менее токсичен, однако выпуск его в атмосферу приводил к тому, что вокруг металлургических заводов гибла вся растительность. Поэтому на всех предприятиях, производящих или использующих эти газы; вопросам техники безопасности уделяется особое внимание.

Сернистый газ и соломенная шляпка

Соединяясь с водой, сернистый газ образует слабую сернистую кислоту Н 2 SO 3 , существующую только в растворах. В присутствии влаги сернистый газ обесцвечивает многие красители. Это свойство используется для отбелки шерсти, шелка, соломы. Но такие соединения, как правило, не обладают большой стойкостью, и белые соломенные шляпки со временем приобретают первоначальную грязно-желтую окраску.

Сернистый ангидрид SO 3 в обычных условиях представляет собой бесцветную очень летучую жидкость, кипящую при 44,8°C. Твердеет он при –16,8°C и становится очень похожим на обыкновенный лед. Но есть и другая – полимерная модификация твердого серного ангидрида (формулу его в этом случае следовало бы писать (SO 3) n ). Внешне она очень похожа на асбест, ее волокнистую структуру подтверждают рентгенограммы. Строго определенной точки плавления эта модификация не имеет, что свидетельствует о ее неоднородности.

Гипс и алебастр

Гипс CaSO 4 · 2Н 2 O – один из самых распространенных минералов. Но распространенные в медицинской практике «гипсовые шины» делаются не из природного гипса, а из алебастра. Алебастр отличается от гипса только количеством кристаллизационной воды в молекуле, его формула 2CaSO 4 · Н 2 O. При «варке» алебастра (процесс идет при 160...170°C в течение 1,5...2 часов) гипс теряет три четверти кристаллизационной воды, и материал приобретает вяжущие свойства. Алебастр жадно захватывает воду, при этом происходит быстрая беспорядочная кристаллизация. Разрастись кристаллики не успевают, но сплетаются друг с другом; масса, образованная ими, в мельчайших подробностях воспроизводит форму, в которой происходит твердение. Химизм происходящего в это время процесса обратен происходящему при варке: алебастр превращается в гипс. Поэтому отливка – гипсовая, маска – гипсовая, повязка – тоже гипсовая, а делаются они из алебастра.

Глауберова соль

Соль Na 2 SO 4 · 10H 2 O, открытая крупнейшим немецким химиком XVII в. Иоганном Рудольфом Глаубером и названная в его честь, до сих пор широко применяется в медицине, стеклоделии, кристаллографических исследованиях. Глаубер так описывал ее: «Эта соль, если она хорошо приготовлена, имеет вид льда; она образует длинные, совершенно прозрачные кристаллы, которые растапливаются на языке, как лед. У нее вкус обыкновенной соли, без всякой едкости. Брошенная на пылающие угли, она не растрескивается с шумом, как обыкновенная кухонная соль, и не воспламеняется со взрывом, как селитра. Она без запаха и выносит любую степень жара. Ее можно применять с выгодой в медицине как снаружи, так и внутрь. Она заживляет свежие раны, не раздражая их. Это превосходное внутреннее лекарство: будучи растворена в воде и дана больному, она очищает кишки».

Минерал глауберовой соли называется мирабилитом (от латинского «mirabilis» – удивительный). Название происходит от имени, которое дал Глаубер открытой им соли; он назвал ее чудесной. Крупнейшие в мире разработки этого вещества находятся в нашей стране, чрезвычайно богата глауберовой солью вода знаменитого залива Кара-Богаз-Гол. Дно залива буквально устлано ею.

Сульфиты, сульфаты, тиосульфаты...

Если вы фотолюбитель, вам необходим фиксаж, т.е. натриевая соль серноватистой (тиосерной) кислоты Н 2 S 2 O 3 . Тиосульфат натрия Na 2 S 2 O 3 (он же гипосульфит) служил поглотителем хлора в первых противогазах.

Если вы порезались во время бритья, кровь можно остановить кристаллом алюмокалиевых квасцов KAl(SO 4) 2 · 12H 2 O.

Если вы хотите побелить потолки, покрыть медью какой-либо предмет или уничтожить вредителей в саду – вам не обойтись без темно-синих кристаллов медного купороса CuSO 4 · 5Н 2 О.

Бумага, на которой напечатана эта книга, сделана с помощью гидросульфита кальция Са(НSO 3) 2 .

Широко используются также железный купорос FeSO 4 · 7H 2 O, хромовые квасцы K 2 SO 4 · Cr 2 (SO 4) 3 · 2Н 2 O и многие другие соли серной, сернистой и тиосерной кислот.

Киноварь

Если в лаборатории разлили ртуть (возникла опасность отравления ртутными парами!), ее первым делом собирают, а те места, из которых серебристые капли не извлекаются, засыпают порошкообразной серой. Ртуть и сера вступают в реакцию даже в твердом состоянии – при простом соприкосновении. Образуется кирпично-красная киноварь – сульфид ртути – химически крайне инертное и безвредное вещество.

Выделить ртуть из киновари несложно. Многие другие металлы, в частности железо, вытесняют ртуть из киновари.

Серобактерии

В природе постепенно происходит круговорот серы, подобный круговороту азота или углерода. Растения потребляют серу – ведь ее атомы входят в состав белка. Растения берут серу из растворимых сульфатов, а гнилостные бактерии превращают серу белков в сероводород (отсюда – отвратительный запах гниения).

Но есть так называемые серобактерии, которым вообще не нужна органическая пища. Они питаются сероводородом, и в их организмах в результате реакции между H 2 S, CO 2 и О 2 образуются углеводы и элементарная сера. Серобактерии нередко оказываются переполнены крупинками серы – почти всю их массу составляет сера с очень небольшой «добавкой» органических веществ.

Сера – фармацевтам

Все сульфамидные препараты – сульфидин, сульфазол, норсульфазол, сульгин, сульфодимезин, стрептоцид и другие подавляют активность многочисленных микробов. И все эти лекарства – органические соединения серы. Вот структурные формулы некоторых из них:

После появления антибиотиков роль сульфамидных препаратов несколько уменьшилась. Впрочем, и многие антибиотики можно рассматривать как органические производные серы. В частности, она обязательно входит в состав пенициллина.

Мелкодисперсная элементарная сера – основа мазей, применяемых при лечении грибковых заболеваний кожи.

Нитрид серы проводит ток

В 1975 г. журнал «Кэмикл энд инжениринг ньюс» сообщил о получении нового неорганического полимера, у которого многие свойства – как у металла. Полимерный нитрид серы – политиазил (SN) n легко прессуется и куется, его электропроводность близка к электропроводности ртути. При этом пленки из политиазила не одинаково проводят ток в продольном и поперечном направлении. Это объясняется тем, что пленка построена из упорядоченных, расположенных параллельно друг другу полимерных волокон.

Что можно построить из серы

В 70-х годах в некоторых странах мира производство серы превысило потребности в ней. Поэтому сере стали искать новые применения, прежде всего в таких материалоемких областях, как строительство. В результате этих поисков появились серный пенопласт – как теплоизоляционный материал, бетонные смеси, в которых серой частично или полностью заменен портландцемент, покрытия для автострад, содержащие элементарную серу.

Вулкан Иджен - действующий вулкан в Индонезии. Другое название синонимично названию местного сернистого озера Кавах Иджен или просто Кавах.

Расположен в густонаселённой местности в Восточной Яве, является границей 2 округов: Бондовосо и Баньуванги. Данный вулкан является комплексом, состоящим более чем из десятка вулканических объектов: стратовулканов, вулканических конусов, кратеров, расположенных в радиусе 20 км вокруг кальдеры.

Кратер вулкана Иджен (Ijen Volcano) – один из самых привлекательных и опасных на Земле. Активный вулкан, постоянно извергающий клубы серного дыма.

Вулкан Кава Иджен не похож на своих собратьев. Внутри его вулканической чаши, бурлит не огнекипящая лава, а тихо раскинулось, окруженное скалами, удивительной красоты неземное озеро с одноименным названием – Кавах Иджен. Его размеры 950 на 600 метров, объем – 36 миллионов кубометров. Но наполнено оно не водой, а смесью концентрированной серной и соляной кислоты, причем горячей: температура ее на поверхности около 60 градусов, на дне – еще выше. Однажды в это озеро опустили на двадцать минут лист алюминия, а когда его вынули, толщина металла стала сравнима с тончайшей тканью. Представляете, что будет, если вдруг начнется извержение? Когда магма вскипятит жуткое содержимое озера и тонны кислоты поднимутся в воздух? Угроза этого не беспочвенна. Правительство Индонезии в 2012 году установило уровень активности Кава Иджен в соответствии с желтой отметкой и до сих пор не понизило это предупреждение. Но выглядит озеро Кавах Иджен – необыкновенно!

Цвет поверхности его переменчив, оно то яблочно-зеленое, то изумрудное, то малахитовое с бирюзовым оттенком. На берегу и в отдалении, на серых с прожилками скалах разбросаны разнокалиберные глыбы ярко-желтого цвета. Это самородная сера. Сначала она жидкая, красивого темно-красного цвета и ползет по склонам, словно лава. Остывая – светлеет, приобретая цвет янтаря. Потом – желтеет, и делается твердой. В темное время суток, жидкая сера, окисляясь, начинает светиться нереальными синими, голубыми огнями и сполохами, фантастически преображая окрестности. Это и есть синяя лава. А днем горение обозначает себя дымчато-белыми клубами. По склонам кратерной воронки курится множество струй, то ли пара, то ли дымов. Вероятнее всего, так через трещины, из недр под давлением вырывается водяной пар, а с ним токсичный хлористый водород, удушающий сернистый газ и еще более вредный и коварный сероводород.

Горение сопровождается шестьюстами градусами Цельсия, сияние не очень интенсивное при дневном свете, во всей красе его можно наблюдать только в ночное время.

Сфотографировать это зрелище – нелегкая задача. Французский фотограф Оливье Грюневальд специализируется на таких изображениях, не используя каких-либо фильтров или модификации изображения. Для того, чтобы сделать это, он должен ждать до заката, когда видны синие языки пламени. Он работает с противогазом, чтобы избежать вдыхания токсичных испарений.

Близ озера местные жители уже долгое время добывают серу. Это очень тяжелая и опасная работа. Люди вручную нагружают корзины кусками серы, а затем относят груз в соседнюю долину, где они получают выплату за добычу. Обычно корзина с серой весит 75−90 кг, и её приходится нести около 300 метров в гору, а потом ещё 3 км после спуска с кратера до ближайшего сахарного завода, в котором серу задействуют в очистительных процессах. Большинство рабочих проделывают такое путешествие дважды в день и, по данным за 2010 год, получают примерно $10-13 в день.

По местным меркам это высокооплачиваемая и престижная работа. На острове Ява очень высокая плотность населения и безработица. Шахтеры, добывающие серу, являются своеобразной рабочей элитой.

Люди, которые занимаются этим трудом, часто жалуются на проблемы, связанные с дыханием. И это не удивительно, ведь долгое время находиться в кратере Иджен без противогаза опасно для здоровья. В свою очередь, рабочие часто пренебрегают защитой во время нахождения рядом с серой.

Серные пары настолько опасны для здоровья, что средняя продолжительность жизни рабочих всего около 47 лет.

: Несколько дней на Иджене, да и после, я провела в обнимку с «Комбайнерами». Навязчивая мелодия и такие же навязчивые слова удивительно хорошо легли на идженовскую картинку. Я смотрела на молодых мужчин, тащащих свои 90 кг серы 3 км вниз, к окошку сдачи, и думала о том, что комбайнеры везде свои. Да…

ВВС отснял про них прекрасный фильм, и каждый день они становятся героями фотохроник любопытствующих. Туризм на Иджене хоть и не принял размаха Бромо, все же отнюдь не редкость. Хорошо, что трафик на тропе пока не такой большой, иначе как лавировать между гостями вулкана тем, для кого эти три километра наверх порожняком и потом снова те же три, но вниз, и с грузом – единственный способ существования? Шахтеры работают каждый день. С утра, порой, до рассвета, они приезжают к началу тропы на Иджен. Там же собираются и туристические средства передвижения.

Потом с пустыми корзинами отправляются в свой ежедневный трек наверх. Всего 3 км. Кто-то идет в одиночку, кто-то собирается группками с товарищами, кто-то пристраивается к туристам и по пути рассказывает о своем житье-бытье, иногда получая в благодарность сигаретку-другую.

Сигареты на Иджене – местная валюта. Шахтеры с удовольствием попозируют для фото – с поклажей или без – или дадут вам попробовать хотя бы поднять их «штангу».

Все будут благодарны сигарете и тут же ее и выкурят. Курят они беспрестанно. Среди шахтеров мы случайным образом встретили только одного, который этой вредной привычки не имел.

По пути есть небольшое «общежитие» для тех, кто решил остаться переночевать поближе к рабочему месту. Ну или отдохнуть/перекусить.

Тут же выставлены удивительные местные сувениры: отлитые из серы разные фигурки. Странные, странные сувениры…

3 км вверх, а потом еще около полчаса вниз, к самой шахте. Сверху картинка выглядит какой-то нереальной: мелкие копошащиеся фигурки в желтом дыме.

Там несколько человек откалывают куски серы и грузят в подоспевшие корзины. Те, кто откалывают, меняются каждый день. Эта работа не оплачивается. Работа в самом аду, у фумарол. Дышать практически нечем. Хотя как нечем? Носом!

Глазам, вероятно, тоже приходится несладко.

Шалаш почти у шахты. Зачем?

Подготовленные к отгрузке корзины.

Терек, наш попутчик, мечтал попасть на Иджен после того, как увидел фильм про шахтеров несколько лет назад. «Почему я не догадался привезти им пачку масок? В Бондовозо они всего по 3 000 рупий!» Терек, не переживай. Не факт, что твои маски вообще использовались бы. Зачем? На самом деле, внизу шахтеры иногда заматывают лицо банданами, платками и шарфами. И все же внизу нам встретился один человек в респираторе.

Леха в самом низу, у шахт.

Терек на тропе. Кстати, в итоге провел на Иджене 5 дней; сбылась его мечта посмотреть на вулкан лично и познакомиться с шахтерами. Часть времени провел в семьях шахтеров. Очень гостеприимные люди. Не думаю, что они ставят перед собой какие-то великие цели рассказать миру о совем тяжелом труде, но спасибо, что они это делают.

Конечно, ничего хорошего для здоровья в том, чтобы дышать серой, нет. С другой стороны, как оказывается, это не так ужасающе вредно, как выглядит на первый взгляд. Шахтеры обычно доживают лет до 50… Они в курсе вреда и риска, но выбирают заниматься этой работой. Более того, она считается весьма неплохой: заработать можно в несколько раз больше, чем где-нибудь, скажем, на фабрике батика (будь таковая поблизости).

Среди шахтеров встречаются и молодые люди, и люди постарше. Многим из тех, кого я отнесла к молодежи-молодежи, оказалось от 30 до 35. Все обычно при семьях и с детьми. Все жизнерадостные, искренние, вежливые. Рассказывают о совей работе и жизни, видимо, в душе посмеиваясь над странными иностранцами, которые слушают все это с широко открытыми глазами. Да, и выглядят молодо. Работа на свежем воздухе, как это ни парадоксально, видимо, влияет.

Несколько раз встречали мужчин более старшего возраста с огромными опухолями в районе скулы. Очевидно, злокачественные и понятно, воздействием какого фактора вызваны.

Кстати, на вид смотришь и удивляешься: как эти невысокие, дохлые ребята умудряются тащить такой груз? Да и на сами корзины смотришь – и не веришь, что там такой вес. На вид сера кажется легкой и пористой, словно губка.

Вдоль тропы часто тут и там стоят корзины, дожидаются своих владельцев.

И отдыхают сами владельцы.

И перекур.

От постоянного ношения коромысла на плечах образуется своеобразный нарост типа мозоли прямо под палку.

3 км с серой, то вверх, то вниз, по валунам и тропам

– и сдавать то, что принес, в окошко приемки. Там, в темноте, под крышей, сидит какой-то уж очень характерный приемщик с острым, неприятно-сосредоточенным выражением лица. Словно читается, как он чувствует себя выше этих работяг, выдавая им копейки за адский труд. Хотя, быть может, это моя буйная фантазия. Очередь к приемке.

Сначала на весы. Обычно вес корзин где-то в рамках 65-90 кг.

После взвешивания получаешь бумажку у приемщика с отметкой сданного веса. Снова загружаешь свою ношу и несешь ее в грузовик, который после наполнения отвезет серу на фабрику. Она где-то километрах в 10 от Иджена. Сколько надо человек/ходок, чтобы наполнить его???

Теперь с бумажкой, на которой указан принятый вес, идем в окошко выдачи зарплаты. Это ценное место работы еще и потому, что деньги ты получаешь сразу.

Этот шахтер сегодня принес немного: болят колени. На бумажке:
- брутто – 64 кг
- нетто – 59 кг
- стоимость за кг нетто – 780 рупий
- итоговая сумма к выдаче – 46 020 рупий, т.е. порядка 4,5 долларов.

За день шахтер делает одну или две (самые сильные и крепкие) ходки, зарабатывая, соответственно, до 10-12 долларов. При удачном стечении обстоятельств в месяц можно заработать долларов до 250.

Вы все еще жалуетесь на жизнь? Машина классом ниже, чем хотелось бы? Покупаете вторую линию одежды вместо первой? А в Европу слетать на выходные можете только лишь раз-другой в год? И обедать порой приходится дешевым бизнес-ланчем за 10 долларов? Действительно, жизнь, вероятно, не сложилась…

П.С. Все время у кратера и по дороге не покидает ощущение, что на странной машине времени ты перенесся на 200-400 лет назад. Сегодня XXI век на дворе, нет? Особенно сильно ощущение колониальных времен у киоска взвешивания. Становится не по себе от мысли, что люди намеренно убивают себя, а ведь можно было бы хотя бы как-то механизировать процесс. Ну хотя бы использовать осликов, буйволов, яков! Наверное, это просто будет дороже, да и ни к чему: сократятся рабочие места, безработица со всеми вытекающими… И все течет так же, как и столетия назад.

Сера (с лат. sērum «сыворотка») - минерал класса самородных элементов, неметалл. Латинское название связано с индоевропейским корнем swelp - «гореть ». Химическая формула: S.

Сера в отличие от других самородных элементов имеет молекулярную решетку, что определяет ее низкую твердость (1,5-2,5), отсутствие спайности, хрупкость, неровный излом и обусловленный им жирный плеск; лишь на поверхности кристаллов наблюдается стеклянный блеск. Удельный вес 2,07 г/см 3 . Обладает плохой электропроводимостью, слабой теплопроводностью, невысокой температурой плавления (112,8°С) и воспламенения (248°С). Легко загорается от спички и горит голубым пламенем; при этом образуется сернистый газ, имеющий резкий удушливый запах. Цвет у самородной серы светло-жёлтый, соломенно-желтый, медово-желтый, зеленоватый; сера, содержащая органические вещества, приобретают бурую, серую, черную окраску. Вулканический сера ярко-желтая, оранжевая, зеленоватая. Местами обычно с желтоватым оттенком. Встречается минерал в виде сплошных плотных, натечных, землистых, порошковатых масс; также бывают наросшие кристаллы, желваки, налеты, корочки, включения и псевдоморфозы по органическим остаткам. Сингония ромбическая.

Отличительные признаки : для самородной серы характерны: неметаллический блеск и то, что она загорается от спички и горит, выделяя сернистый газ, имеющий резкий удушливый запах. Наиболее характерным цветом для самородной серы является светло-желтый.

Разновидность :

Вулканит (селенистая сера). Оранжево-красного, красно-бурого цвета. Происхождение вулканическое.

Моноклинная сера Кристаллическая сера Кристаллическая сера Селенистая сера - вулканит

Химические свойства серы

Загорается от спички и горит голубым пламенем, при этом образуется сернистый газ, имеющий резкий удушливый запах. Легко плавится (температура плавления 112,8° С). Температура воспламенения 248°С. Сера растворяется в сероуглероде.

Происхождение серы

Встречается самородная сера естественного и вулканического происхождений. Серобактерии живут в водных бассейнах, обогащенных сероводородом за счет разложения органических остатков, - на дне болот, лиманов, мелких морских заливов. Лиманы Черного моря и залив Сиваш являются примерами таких водоемов. Концентрация серы вулканического происхождения приурочена к жерлам вулканов и к пустотам вулканических пород. При вулканических извержениях выделяются различные соединения серы (H 2 S, SО 2), которые окисляются в поверхностных условиях, что приводит к восстановлению ее; кроме того, сера возгоняется непосредственно из паров.

Иногда при вулканических процессах сера изливается в жидком виде. Это бывает тогда, когда сера, ранее осевшая на стенках кратеров, при повышении температуры расплавляется. Отлагается сера также из горячих водных растворов в результате распада сероводорода и сернистых соединений, выделяющихся в одну из поздних фаз вулканической деятельности. Эти явления сейчас наблюдаются около жерл гейзеров Йеллоустонского парка (США) и Исландии. Встречается совместно с гипсом, ангидритом, известняком, доломитом, каменной и калийной солями, глинами, битуминозными отложениями (нефть, озокерит, асфальт) и пиритом. Также встречается на стенках кратеров вулканов, в трещинах лав и туфов, окружающих жерла вулканов как действующих, так и потухших, вблизи серных минеральных источников.

Спутники . Среди осадочных пород: гипс, ангидрит, кальцит, доломит, сидерит, каменная соль, сильвин, карналлит, опал, халцедон, битумы (асфальт, нефть, озокерит). В месторождениях, образовавшихся в результате окисления сульфидов, - главным образом пирит. Среди продуктов вулканического возгона: гипс, реальгар, аурипигмент.

Применение

Широко используется в химической промышленности. Три четверти добычи серы идет на изготовление серной кислоты. Применяется она также для борьбы с сельскохозяйственными вредителями, кроме того, в бумажной, резиновой промышленности (вулканизация каучука), в производстве пороха, спичек, в фармацевтике, стекольной, пищевой промышленности.

Месторождения серы

На территории Евразии все промышленные месторождения самородной серы поверхностного происхождения. Некоторые из них находятся в Туркмении, в Поволжье и др. Породы, содержащие серу, тянутся вдоль левого берега Волги от г. Самара полосой, имеющей ширину в несколько километров, до Казани. Вероятно, сера образовалась в лагунах в пермский период в результате биохимических процессов. Месторождения серы находятся в Раздоле (Львовская область, Прикарпатье), Яворовске (Украина) и в Урало-Эмбинском районе. На Урале (Челябинская обл.) встречается сера, образовавшаяся в результате окисления пирита. Сера вулканического происхождения имеется на Камчатке и Курильских островах. Основные запасы находятся в Ираке, США (штаты Луизиана и Юта), Мексике, Чили, Японии и Италии (о. Сицилия).

Фотограф Оливье Грюнвальд недавно несколько раз посетил шахту по добыче серы в кратере вулкана Кавах Льен в Восточной Яве, Индонезия. Он привез с собой необходимое оборудование, чтобы запечатлеть сюрреалистические снимки, освещенные лунным сиянием, факелами и голубым пламенем горящей серы.

Шахтеры в кратере сначала поднимаются на 2600 метров, затем спускаются к берегу 200-метрового кратерного озера серной кислоты, где они добывают куски чистой серы и везут их обратно на станцию взвешивания. Представляем вашему вниманию фотографии этих смелых шахтеров, работающих под покровом ночи.

1. Шахтер в кратере вулкана Кавах Льен с факелом смотрит на потоки жидкой серы, горящей жутковатым голубым пламенем. (© Olivier Grunewald)

2. Вулканическое кислотное озеро в кратере вулкана Кавах Льен. На берегу озера проводятся работы по добыче серы. (© Olivier Grunewald)

3. Паровые и кислотные газы среди желтоватых отложений серы. (© Olivier Grunewald)

4. Горящая раскаленная сера в вулканическом кратере. Сера плавится при температуре 100 градусов по Цельсию, но температуры в кратере недостаточно для самовозгорания – это пламя подсвечивается факелами шахтеров. (© Olivier Grunewald)

5. Шахтер расчищает куски серы, чтобы забрать в шахтоуправление. (© Olivier Grunewald)

6. Отложения серы на старой бочке, окруженной серой, в кратере вулкана Кавах Льен. (© Olivier Grunewald)

7. Шахтеры добывают серу в адских условиях. Фотограф Оливье Грюнвальд вспоминает, что запах был просто нестерпим, для работы были необходимы маски, которых у шахтеров практически не было. (© Olivier Grunewald)

8. Шахтеры с длинными ломами, которыми они достают серу из кратера. (© Olivier Grunewald)

Подпишитесь на нас в telegram

9. «Скульптура», образованная жидкой серой в кратере Кавах Льена. В растопленном состоянии сера кажется практически кроваво-красной, но по мере остывания приобретает желтый оттенок. (© Olivier Grunewald)

10. Расплавленная сера горит, стекая с камней и керамических труб, превративших серные газы из вулкана в жидкость, которая затем затвердеет и будет пригодна для сбора. (© Olivier Grunewald)

11. Шахтеры работают в кратере, освещенные лишь факелами. (© Olivier Grunewald)

12. Шахтер кладет серу в корзинки, в которых ее выносят из кратера вулкана. (© Olivier Grunewald)

13. Шахтер собирает серу рядом с трубами конденсации. На заднем плане горит расплавленная сера. (© Olivier Grunewald)

14. Шахтеры с кусками серы готовятся к возвращению наверх. (© Olivier Grunewald)

15. Расплавленная сера горит на твердом отложении. Шахтеры потушат огонь, чтобы не потерять ценные запасы серы. (© Olivier Grunewald)

16. Шахтер с грузом возвращается обратно. (© Olivier Grunewald)

17. Шахтер в противогазе в густом облаке пара и кислотного газа с факелом, недалеко от голубого пламени горящей жидкой серы. (© Olivier Grunewald)

18. Пара полной серой корзин может весить от 45 до 90 кг. (© Olivier Grunewald)

19. Шахтеры готовятся возвращаться со своим грузом, окруженные паром, газом и светом от факелов. (© Olivier Grunewald)

20. Барак шахтеров прямо в кратере вулкана Кавах Льен. (© Olivier Grunewald)

21. Шахтер с грузом в виде кусков серы. (© Olivier Grunewald)

22. Шахтеры с факелами возвращаются по 200-метровой стене кратера Кавах Льен. (© Olivier Grunewald)

23. А внизу продолжаются работы по добыче серы. (© Olivier Grunewald)

24. Шахтер взвешивает добытую серу в шахте. Шахтеры проделывают свое путешествие 2-3 раза в день, а зарабатывают около 13 долларов в день. (© Olivier Grunewald)

25. На станции первичной обработки куски серы разбивают на более мелкие части. (© Olivier Grunewald)

26. Затем куски серы помещают в крупные сосуды над огнем для повторного плавления. (© Olivier Grunewald)

27. Расплавленную серу разливают из плавильного котла в ведра. (© Olivier Grunewald)

28. Небольшое количество расплавлено серы разливают в другие сосуды. (© Olivier Grunewald)

29. Последняя стадия: разливание жидкой серы на плиты для остывания. После затвердения ее перевезут на местные заводы для изготовления резины, обесцвечивания сахара и других промышленных процессов. (© Olivier Grunewald)

30. Фотограф Оливье Грюнвальд готовится сфотографировать небольшую скалу, нависшую над кислотным вулканическим озером Кавах Льена. «Такое ощущение, будто ты на другой планете», - делится впечатлением фотограф. В адских условиях кратера Оливье потерял один фотоаппарат и два объектива. После окончания работы над проектом он выбросил всю свою одежду, так как запах был настолько сильным, что он не смог от него избавиться. (© Olivier Grunewald)